	Lehman Brothers Equities Risk Technology

	GPM Architecture

 Architecture Document

Draft - Version 0.3
GPM Back End
	Project Number:
	

	Version Number:
	0.4

	Release Date:
	

	Author:
	Benny Pollak

1. Version History
	Version
	Author
	Date
	Comments
	Sign Off

	0.2
	Benny Pollak
	
	Initial version
	

	0.3
	Patrick Joiner
	
	Asia comments
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

2. Project Approval
	Department/Role
	Name
	Signature
	Date

	Equities IT

	Sara Minsteris
	
	

	Equities IT

	Saritha Parchuri
	
	

	
	
	
	

	
	
	
	

	
	
	
	

1Architecture Document

21.
Version History

22.
Project Approval

63.
Introduction

63.1.
Objectives

63.1.1.
Business Objectives

63.1.2.
IT Objectives

63.1.3.
New Features

64.
Executive Summary

64.1.
Introduction

64.2.
Summary of Recommendation

75.
Current State

96.
Current Implementation

96.1.
Introduction

96.2.
What is GPM

96.3.
High Level Description

96.3.1.
Position Keeping

106.3.2.
PNL

106.3.3.
Miscellaneous Data

106.3.4.
Product Data

106.3.5.
Market Data

106.3.6.
Analytics

106.3.7.
Liquidation

106.3.8.
Reports

106.3.9.
Utilities

106.3.10.
Web Services

106.4.
Services Breakdown

116.4.1.
Region

116.4.2.
Group

116.4.3.
Stripe

116.4.4.
Instance

116.5.
Detailed Service Description

116.5.1.
Position Keeping

156.5.2.
PNL

186.5.3.
Liquidation

196.5.4.
Product Data

196.5.5.
Market Data

206.5.6.
Utilities

206.5.7.
Web Services

206.6.
Strength/Weakness Analysis

216.6.1.
Operations

216.6.2.
External User Interfaces

216.6.3.
Product Data

216.6.4.
Position Keeping

216.6.5.
Liquidation

226.6.6.
PNL

226.7.
Interaction Diagram

246.8.
Event Flow

247.
Frameworks/Languages/APIs

247.1.
Introduction

247.2.
A Note on Languages: k/q vs. Java

257.3.
Relative performances of K vs. Java

267.4.
Basic Strategies

267.4.1.
All Q

267.4.2.
All Java

267.4.3.
Mixed Q/Java

267.4.4.
Extend the Java API to Allow Subscriptions

267.4.5.
Java with Embedded K

267.5.
Extending the Java API to Allow Subscriptions

277.5.1.
The com.lb.base.eqmf.dbcf.* package

277.5.2.
Table Registration: .cf.register

277.5.3.
Service Registration: .cf.initSrv

277.5.4.
Service Start: .cf.start

277.5.5.
Subscription

277.5.6.
DEFAULT Recovery

277.5.7.
ATOMIC Recovery

287.5.8.
Publishing

287.5.9.
execProc

287.5.10.
execSQL

287.5.11.
Future Development

287.5.12.
Other Classes

287.6.
Service Oriented Architecture (SOA)

287.6.1.
The Problem

297.6.2.
API Requirements

297.6.3.
Next Steps

297.7.
A Common Framework

297.7.1.
Database

297.7.2.
Object Layer

297.7.3.
Transport

297.8.
Scripting

308.
Proposals

308.1.
Introduction

308.2.
Problem Area 1: PNL

308.2.1.
TickServer Proposal

318.2.2.
PNL Proposal

318.2.3.
Alternative PNL Proposal

328.2.4.
Recovery Proposal

328.2.5.
Next Steps

328.3.
Problem Area 2: Position Keeping

328.3.1.
Proposal

328.3.2.
Alternative Proposal

328.3.3.
Position/Trade History Proposal

338.4.
Problem Area 3: Product Data

338.4.1.
Proposal

338.5.
Ticker Plants

338.6.
Messaging Middleware Layer

338.7.
Optional Suggestions (work in progress…..)

338.7.1.
Operations

338.7.2.
External User Interfaces

338.7.3.
Product Data

338.7.4.
Position Keeping

348.7.5.
Liquidation

348.7.6.
Global Changes

359.
Summary of Suggestions

3510.
Appendix

3510.1.
Another Take on the Q/K – Java Debate

3610.2.
System use by Region/language

3. Introduction
The purpose of this document is to analyze the current state of the GPM back-end system and provide recommendations for its further development based on the objectives set forth in the next section. It describes in detail its current architecture, its strengths and weaknesses and provides recommendations.

This document does not address the future implementation of specific features or business requirements. It only addresses these as they relate to architectural changes needed for their implementation.

Note: The system described is that which will be in production after the Split Group release in April 2007.
3.1. Objectives
3.1.1. Business Objectives
· Integrate with trader workflow from the front end
· Zero-tolerance: increase reliability, no down time, accurate info
· Provide scalability to accommodate expected growth of the business and adoption by new users.

· Allow for the addition of a large number of new calculations (columns)
· Integrate all regional GPMs into a global platform.

3.1.2. IT Objectives
· Simplify support workflow

· Reduce the time needed to implement new features

· ????Reduce Overall Complexity to

· Convert GPM into a service oriented architecture (SOA) so that other systems within the firm can use the various services.
· Implement an entitlements layer to access GPM, needed for compliance requirements and system stability. Join with services…
· Increase security and stability

3.1.3. New Features

· Minute-by-minute pnl histories, (going back the risk dashboard idea, being able to attribute a pnl or delta change during the day).
· “My Portfolio” feature

4. Executive Summary
4.1. Introduction
4.2. Summary of Recommendation

High Priority Systems
These are systems that, as currently implemented, are either not meeting current requirements or will not keep up with expected growth. These are also systems areas that, because of their importance, warrant a major effort:
	Component
	Current Implementation
	Proposed Design

	Position Keeping
	Services:

· Core (K)

· CoreHelper (K)

· FES (K)
	Combine into a single app:

· GPMCore (Java)

And a Q cache:

· GPMCoreCache (Q)

	Product Data
	Services:
· ProductsProxy (K)

· ProductService (Java)
	Reorganize into:
· PRODUCT_DATA (Q)

· OTC_PRODUCT_DATA (Q)

· ProductsProxy (Java)

· ProductsCache (Q)

· ProductEditTool (Java)

	PNL
	Services:
· PNL (K)

· Synth (K)

· RTP/OTC proxies (Q)

· Recovery (K)
	Reorganize into:

· PNL (Q)
· Synth (Q)

· TickService (expanded MDS?)

· Recovery (Q)

	Historic GPM Positions
	Services:

· ArchiveService (K)
· QueryProxy (K)
	Rewrite:

· ArchiveService (Q)
· QueryProxy(Java)

	
	
	

Frameworks/APIs
As detailed in section 7, the following will have to be written to implement the above high priority systems.
· Java as a service extension to DBCF/EQMF
· Service Oriented Layer API for GPM

· Table/Object layer for Java (HSQL/Hibernate?)

· Jython scripting library.

Lower Priority Systems
These are systems that are not currently a problem but should eventually be converted to Java because of the eventual disappearance of K expertise.
	Component
	Current Implementation
	Proposed Design

	Sweeps
	Services:

· SweepSvc (K)

· SweepSvcBatch (K)

· LiqQuoteSvc (K)

· LiqQuote (Java)
	Combine into a single app:

· Sweeper (Java)

	Position Aggregation
	Services:

· PosAggr (K)

· PosAggr (Java)
	Combine into a single app:

· PosAggr (Java)

	
	
	

	
	
	

	
	
	

5. Current State

Since its initial deployment in 2002, some parts of GPM have been rewritten, some have been overhauled and new services have been added; but there has never been a thorough analisys and redesign of the overall system.
GPM was originally designed as a monolithic system to handle stocks. Since then, the volume has grown well beyond what it was originally envisioned and, in addition to the many business functions added, the following major architectural enhancements have been made:

· It is now Global with the same code base.

· Handling of options
· Splitting of positions by strategy
· Categorizing positions by currency (ADRs)

· Striping of PNLs by symbol

· Splitting whole GPMs by accounts

· Many compliance related enhancements (approvals,…)

· Many performance changes
As a consequence, GPM is now:

· Very hard to maintain, test and add new functionality
· Increasingly hard to manage (starting with the next US release, GPM will run processes???? on 30 machines!).
6. Current Implementation
6.1. Introduction

This section describes the current implementation. It first gives a high level overview of the design. It then describes each service in detail.
6.2. What is GPM
GPM is an equities based real time trading P&L and consolidated risk management platform designed to provide user entitled views across accounts, products, and sectors. GPM provides various real time P&L valuations and real time views of consolidated positions, synthetic positions, net exposures, and associated risk metrics.

Fig. 1: Black box view

[image: image1.emf]GPM

FE

GPM Tib

PosAggr Tib

AQ Tib

Position information

Agg. positions

pnl by desk

pnl

Execution

pnl

Market data

Product information

GPM Tib

pnl

Trades

Crosses Analtics (greeks)

Sweeps

Euclid

AMM

Risc

Gstop Orders

6.3. High Level Description
The GPM system is made up of a number of k and Java applications. They can be divided into the following high level groups:

6.3.1. Position Keeping

This is a set of services that keep track of positions, (defined by a combination of an account, an ESMP and a strategy that represents a real position, as opposed to synthetic positions discussed later). It starts the day with the previous day’s positions. Recon processes are applied which consolidate selected desks with information from the different Lehman back-office systems and generate break reports.
During the day the positions are updated via feeds from OES and other systems (DPT, McGregor…). Positions are also adjusted from the GPM front-end.

Included in this group is also the Position aggregation service (used only in the US). It provides a feed of aggregated positions per aggUnit.

GPM does not keep track of orders, only executions.

GPM also keeps track of historical information. Due to capacity constraints, position information is kept for one day for the US, 10 days for Asia and 5 days for EU. Historical execution history is provided via historical OES.
6.3.2. PNL

This set of applications combines position information (both real and synthetic), market data and analytics to calculate real-time P&L and other risk information. The information is published in real-time and used for request-response by the front end as well as other systems at Lehman.
6.3.3. Miscellaneous Data

6.3.4. Product Data

These applications provide base information to GPM. This information includes product information (from ESM, AMM
6.3.5. Market Data

These applications are mostly vendor apps front-end to vendor services.
6.3.6. Analytics

These applications calculate greeks for instruments. These greeks come from 2 sources: most of them come from an AMM feed. The ones that are not in the feed are calculated individually by getting prices and volatilities from EVOS and sending them to ValEngine for valuation.
6.3.7. Liquidation
This is a set of applications that is used to move positions from facilitation to liquidation accounts. They include services that receive liquidation quote curves from the quants and interpolate liquidation quotes for actual positions, and a service that perform the actual move, either automatically or manually.
6.3.8. Reports

6.3.8.1. Asia

· Cash desk position report – used by Asia finance

· India FII position report – used by Asia control room

· Portfolio report – used by Japan portfolio desk

· ITS break reports (by desk)

· RISC break reports (by desk)

6.3.8.2. US

6.3.8.3. EU

6.3.9. Utilities
6.3.10. Web Services
6.4. Services Breakdown
Given regional, legal, volume and speed requirements, global GPM services are divided by Region, Group, Stripe and Instance

6.4.1. Region

GPM now runs complete, separate installations in each of the 3 regions: NY, London and Tokyo. These regions run independently, for now.
6.4.2. Group

Within each region GPM can be divided into 2 or more complete implementation capable of running independently of the others. The separation is done by accounts (currently only NY separates by group)
6.4.3. Stripe

Within a group, to increase performance and capacity, the PNL process can be divided into 2 or more stripes (FTTags). Each stripe handles a subset of positions divided by symbol (currently in NY there are 4 stripes: A-C, D-K, L-R and S-Z)
6.4.4. Instance

For purposes of fault-tolerance, we run more than one instance of each service. For java apps, the fault-tolerance feature of the EQMF framework is used. For k services we just run 2 or more instances and the DBCF framework takes care of it. Because of the location awareness future of the tib-free discovery service, services always try to connect to services in the same location. This provides a layer of security since problems in one location can be easily isolated.
Some services are declared explicitly to be primary by use of the EQMF primary flag. The tree of services connected to a primary service then become implicitly primary.
6.5. Detailed Service Description
This section describes each service in detail and gives a brief description of the current state. The services are organized by functional groups.
6.5.1. Position Keeping

These applications are responsible for keeping position information, both current and historic. There is no pricing or any analytics information at this level, except for start-of-day and prices at which executions were done.
6.5.1.1. GPMCore
current design

This K service is the position keeping database. It listens to executions from OES (via FES) and other sources from Tib (via CPServer). It keeps a history of every position during the day so it is used by the intra-day position drill-down feature.
The databases are kept in in-memory K tables, which are written to disk regularly during the day and at the end-of-day.

Current state
This service is in reasonable good shape, it was rewritten in 2005. It currently handles over 200,000 positions and over a million position histories. Benchmarks show that it can handle up to about 4 million position histories. It can process trades at at least 5 times the current NY rate.
6.5.1.2. Recon

current design

This is not a service but a set of scripts that consolidate start of day position and price information in Core with that of the back office systems.

Recon is done against

· AMM

· TMS

· ITS

· Prime Brokerage

· RISC

· DPT

· DPTPROP

· DELTAONE

· Fidessa
· In addition, for ETF products marked for theoretical pricing, SOD price set to NAV from a SIAC feed.
Current state
The scripts are in reasonably good shape. Some of the issues are:
· It is getting to be hard to maintain because most of the logic is in common routines
· Date check for feed files is done using old Java classes where holiday dates have to be hardcoded.

· No revert

· Operationally this is a complicated process: files come in a different time, via different processes, with different dates and in different formats.
· Asia has the option of overwriting positions from ITS/RISC or not overwriting, although typically positions are not overwritten. In the future the ITS/RISC files will be only used as a reference versus the GPM positions.

6.5.1.3. FES (Filter Execution Services)
current design

This K service listens to the different instances of OES and filters out executions that would be doubly counted as well as positions from accounts not handled by GPM.
Current state
This service is in reasonable good shape. The only issue is its complexity.
6.5.1.4. CoreHelper

current design

This K service is a utility program used mostly to handle corrections. It acts mostly as an asynchronous appendage to GPMCore and FES.
Current state
This service is in reasonable good shape for NY use. Given the large volume of corrections in London it does not fill its requirements.
Blip, if the orig is not there. Eu does in fes

6.5.1.5. TibAdapterAQ

current design

This is a TibAdapter that publishes the positions table (LastPosition) on Tib. The feed is used mostly by AutoQuote.
Current state
This is just a TibAdapter and performs well.

6.5.1.6. ArchiveServer

current design

This K service stores previous days Position histories. It is nothing more than a holder of historic PositionHistory table.

Current state
It’s a very simple process but can only hold one day. The process of creating that one table is very complex and prone to failure.

6.5.1.7. QueryProxy
current design

This K service is used by the Front-end to perform drilldowns. It routes position drilldowns to ether GPMCore or ArchiveServer. Trade drilldown requests are routed to the Historic OES service.

Current state
This service is very complex.

6.5.1.8. GStop
current design

This K service listen to the ORDERS services for GStop orders and sends them as positions to Core so that they can be viewed in GPM.

Current state
This is a very simple service.

6.5.1.9. CPServer

current design

This is a Java front end for the Core service. It listens to Tib messages and sends them to GPMCore.
Current state
This application has been mostly superseded in the US by Tas.

6.5.1.10. PosAggr
current design

This K service listens to position information from Core and publishes a table with positions for each esmp with quantity aggregated by aggUnit

Current state
This application is very complex and hard to maintain. Performance is good though.

6.5.1.11. PosAggrTib
current design

This java application is a TibAdapter that publishes the aggregated positions table created by PosAggr unto Tib
Current state
This is just a TibAdapter and performs well.

6.5.1.12. Tas (Transaction Approval Service)
current design

This java application serves two purposes: It captures and logs incoming Tib request (trades, adjustments and book-to-book transfers) to GPM and logs them in a DB2 database. For requests that require approval (FE trades, transfers and adjustments), it will handle the approval process.
Current state
This service was recently written and performs well.

6.5.1.13. TraMS (Trade Messaging System)
current design

This java application acts as a hub used to send trades to Stomp. It used now only with for the crossing functionality.
Current state
This service was recently written and performs well.

6.5.1.14. Shinawatashi (Asia)
This service helps with the Shinawatashi process which runs every morning on certain cash/margin books. The end result of this process is to flatten the margin positions using the positions in the corresponding cash books and is used by the quants and portfolio desks in Japan.

6.5.1.15. TIB Core Adapter (Asia)
This publishes the positions via TIB Rendezvous. The subject contains the book ID so that downstream applications can subscribe as necessary, and the published fields are a subset of those in LastPosition.

6.5.1.16. LehmanRisk file (Asia)

A position file is generated daily for LehmanRisk.

6.5.1.17. Carry Calculation (Asia)

The carry is calculated per position. This is mainly done to replace functionality in SNM so that the Asia quants could use GPM rather than Euclid.

6.5.1.18. DOLFIN reconciliation file (Asia)

A position file is generated daily (including carry) and FTP’d to DOLFIN for reconciliation with GQUEST.

6.5.1.19. ExecsProxy (Asia)

This k service listens to the real-time OES exec feeds and stores them in a k table which matches the GPM schema. GPM uses this instead of direct subscriptions to OES execs. It also contains a mapping for Net books (LPS-related).

6.5.1.20. OMAR Interface (Asia)

This INMAX process publishes orders to the Fidessa OMAR component resulting from the “Prepare Orders” and “Raise Orders” functionality in Asia GPM.

6.5.1.21. FTS Trade Publisher (Asia)

This INMAX process publishes trades entered in GPM (other than shinawatashi trades) to the Asia Fidessa FTS component so that they can be replicated to London.

6.5.2. PNL
These applications combine position with pricing and analytics information and produce P&L and risk information. They also create synthetics positions for the existing positions in ETFs, options…
The generated information can be queried and updates are published via Tib.
6.5.2.1. Euclid PNL – Euclid Pos man

6.5.2.2. PNL
current design
This is the main application (written in k.) It subscribes to position information from Core, market data from the different sources, analytics data and synthetics positions. It calculates and publishes P&L and risk data.
To optimize performance and bandwidth, not all the information is calculated as soon as it is available. Also, the information is published as a set of normalized tables. Processing is as follows:

PNL is constantly receiving executions and market data. When executions and trade market data come in, the internal tables are updated. Not so with quote market data, quotes are buffered so that they only update every 4th tick.
The data to be published, the pnl table, is divided into 9 sub-tables, normalized by event type + a market data block: The sub-tables are divided depending on which columns change given an event. This information is parameterized in the viewConfig file. The sub-tables are:
	Event
	Part of table published per cycle

	New positions
	Up to 1000

	Dividend PNL updated
	No limit

	Traded positions
	Up to 2000

	Synthetic position changes
	Up to 5000

	Traded synthetic positions
	Up to 2000

	Tick derived
	Up to 4000

	Synthetic tick derived
	Up to 4000

	Other tick derived
	Up to 4000

	Header information
	Up to 1000

	Tick block
	20% of all changed ticks

· PNL is designed to be striped by symbol. Currently PNL is only striped in the US (into 4 stripes)
· MTD and YTD PNL are kept within GPM in Asia instead of reading from the GQUEST extract files (Asia). During UAT it was not possible to reconcile GQUEST MTD and YTD PNL with GPM due to limitations in the timing of the GQUEST PNL extract files. In addition GQUEST files are not generated on Japanese holidays which can product incorrect PNL for non-Japan users (i.e. Hong Kong users).

Current state
This is perhaps the application most in need of an overhaul. It was left mostly unchanged during the last major rewrite. It suffers from the following problems:
· The code is very hard to read/maintain.
· Because of lack of modularization and a clear design it is very hard to add new functionality.

· Many parts the code are no longer in use.
· It receives too much market data, which causes it to back-up during peak hours.
Also, there is too much tick processing code in PNL. This is most likely the reason why we see tick delays.
6.5.2.3. Synth
current design

This K service breaks down real, non-stock position and creates equivalent positions in the parts it represents. They are called synthetics since they are not real, just equivalents. It uses a file feed from PWB to get breakdown information of ETFs and options and subscribes to the Analytics service for greeks. As synthetic positions change due to greek and real positions changes they are published to PNL.
Current state
This was left mostly unchanged during the last rewrite. Issues are:
· No api, not even easy to do in KSQL.

· High CPU utilization

· Slow to come up
6.5.2.4. Recovery
current design

This K service acts as a proxy for the combined, striped, PNLs. It subscribes to all the PNLs for their portion of the pnl table and combines them into one, consolidated, up to date pnl table.
It also maintains a consolidated Tick table.
Current state
This service is in reasonable good shape and there are no performance issues with it.

The code is somewhat old and is fairly hard to maintain.

Issues remain with:

· Uses by many external users and has no security

· The tick information is incorrect, mostly at EOD.

6.5.2.5. TibAdapterRecovery

current design

This is a TibAdapter whose only role is to provide access to Recovery’s pnl table via Tib.

Current state
This is just a TibAdapter and performs well.

6.5.2.6. AMMPricer (EU)

This Java service listens to option positions from AMM. It applies prices as manual marks in Core, sends greeks to Synth, and every 10 minutes sends prices to RoyalBlue via CPServer.
6.5.2.7. AMMPositions (EU)

This Java service listens to positions from AMM and acts as an FES by sending these to CORE. Once the positions make it to PNL, it sends the valations to PNL.
6.5.2.8. EuclidPositionsCore (EU)

This java services listens to Euclid for position and valuation changes and, once a minute, sends all changed positions to Core, new pnl to Positions and greeks to Synth.

This process listens to a small number of Cash books, and only for Options
6.5.2.9. EuclidPositions (EU)

This java services listens to Euclid for position and valuation changes and, once a minute, sends all changed positions to RawPNL
6.5.2.10. RawPNL (EU)

This K service looks to the outside world just like another PNL service. Iyt does not do any PNL calculations though. Instead, it listens to EuclidPositions and publishes the changes as if it were a regular PNL.
Note that these positions do not exist in Core so they are not seen in position drilldowns.
6.5.2.11. rtpProxy

current design

This K service acts as a proxy for the actual Reuters ticker plants. The subscription mechanism is via a socket, not DBCF. PNLs do not subscribe directly to the ticker plants, they subscribe to rtpProxies instead. The reasons for this are:
· Ticker plants publish multiple ticks for the same symbol in one block. rtpProxy colaspses these and only sends the last one

· rtpProxy removes the columns that are not needed by PNL
Current state
This service was recently rewritten and is in good shape. There are no performance or other issues with it.
6.5.2.12. OTP

current design

This service is very similar to rtpProxy except that it handles options. The main difference is that it connects to a Q ticker plant via a standard DBCF subscription.
Current state
This service was recently rewritten and is in good shape. There are no performance or other issues with it.
6.5.2.13. Combinator

current design

Combinator, written in k, combines the pnl updates from multiple PNL stripes and publishes:
· A combined message, without the market data block

· A message with only the market data block

· Individual messages split by desk, without market data.
The reason combinator is needed is that without it the front end would be getting 4 (the current number of stripes) times the number of messages. Even though the messages are smaller, there is a constant overhead in the front-end processing of a message. Benchmarks show that it would be unacceptable to split the message even in 2.
In order to optimize the number of messages sent, combinator uses the following algorithm:

1. Wait one second
2. See if updates from all the stripes have come in. If so, publish the messages and start at 1 again.
3. Wait another second.
4. Publish whatever is there. Start at 1 again.
Current state
This service was recently rewritten and is in good shape.
The only issue with it is that it can add up to 2 seconds of latency to GPM.

6.5.2.14. TibAdapter, SplitTibAdapter
current design

As is the case with all our services that publish to Tib, we use standard CMTE TibAdapters to do this.
A special message creator class is used for large messages, which compresses them (between 4-5 to 1).

Currently we use 2 instances (actually 2 fault-tolerant pairs): One publishes the full message and a market data block in multicast mode. The second (SplitTibAdapter) publishes one message per desk plus a market data block to a remote RV daemon.
Current state
TibAdapters are very reliable, flexible and simple to use. We plan on continuing to use them.
6.5.3. Liquidation
6.5.3.1. SweepSvc

current design

This service, written in k, listens to positions from all the pnl stripes . It receives requests via remote k calls to liquidate positions (manually from the front-end or as batch requests from SweepBatchSvc). When it gets a request, it applies the relevant business rules to check for eligibility, gets prices from Wombat and sends the eligible execution requests to Brass via BrassBridge.
Current state
Even after a good re-organization job during a recent overhaul, it remains extremely complex. This is a perfect example where the attempt to implement complex business rules in a complex language failed. (A lesson for the overhaul of PNL?)
6.5.3.2. SweepBatchSvc

current design

This service, written in k, is relic of the cron days. It wakes up every 5 minutes and calls the SweepSvc to do a batch liquidation. This used to be done in cron before its banishement.
Current state
Perfectly good code.
6.5.3.3. LiqQuote

current design

This service, written in Java, listens to liquidation quote curves and maximum liquidation quantities published by the quants on Tib and sends them to LiqQuoteSvc.
Current state
Perfectly good code. Has to be restarted every time LiqQuoteSvc is bounced though.
6.5.3.4. LiqQuoteSvc
current design

This service, written in k, receives position information from Core, liquidation quote curves from LiqQuote and interpolates liquidation quotes for actual positions. These are then published to PNL together with the maximum liquidation quantities.
SweepSvc calls this service to get maximum liquidation quantities.

The FE also queries this service for interpolated quoted for a given quantity.
Current state
Perfectly good code. The quotes are no longer in use but some users are still interested in them so they are still published.
6.5.4. Product Data
6.5.4.1. ProductsProxy

current design

This service, written in k, is the products database used by all GPM servces. It is basically a cache for the GL_DATA_PRODUCTS service maintained by the data analytics group. Its purpose is:

· To filter out products not needed in GPM.
· Remove columns not needed in GPM

· Set some GPM specific information

· Listen to ProductService and insert products not provided by GL_DATA_PRODUCTS

· Load product OTC information from a file feed
· Load product GEDS information from a file feed
· Load product Hybrid information from a file feed
· Load data from the Fidessa products database into the products proxy. This is in order to cover gaps in coverage in ESM (Asia)

.

Current state
This service has the following issues:
· Cannot be bounced during the day.
· Inconsistent data in different instances. This s mostly because of data inconsistency in the different instances of GL_DATA_PRODUCTS and the inability to synch it up by bouncing it during the day.

Test cachinb only what we need. Last 30 days.

6.5.4.2. ProductService

current design

This service, written in Java is a Tib front end for ProductsProxy. It feeds option products from AMMFlow to ProductsProxy.
Current state
This is a very simple application and is In good shape.
6.5.5. Market Data
6.5.5.1. Ticker Plants
Valuation logic? image
6.5.5.2. FX
6.5.5.3. VWap

6.5.5.4. Keihai service (Asia)

This service keeps track of Japanese stocks that have entered keihai (i.e. no last price due to a buy/sell imbalance) and prices based on the bid/ask instead of the last price until the stock exits the keihai state (i.e. a trade is done on the stock). The start of keihai is indicated in the Reuters feed with a special flag but exit from Keihai is not indicated by Reuters.
6.5.6. Utilities

6.5.6.1. CPConfigServer

current design

This service, written in Java is used by the front-end to store and retrieve configuration in a DB2 database. It is used to store workspace layouts, monitors, alerts and filter information.
Current state
This application is in good shape.

6.5.6.2. GPM Mon (Asia)
This service monitors trade corrections and rejects and sends notifications on certain events.
6.5.6.3. CountsAcross (Asia)
current design

This service compares different K services in order to help locate inconsistencies between them.

6.5.7. Web Services

6.5.7.1. Positions web service (Asia)

This is a Java Server Page (JSP) which queries the Recovery service and outputs an xml representation of the positions for the user logged into the PC (via LehmanLive authentication). This is used by several traders in Hong Kong to import position information into Microsoft Excel spreadsheets.

6.6. Strength/Weakness Analysis

This section will analyze the GPM back-end not as individual components, but as functional groups and sets of components that work together. This approach will give us more flexibility than to think of ways of redesigning each application by itself.
6.6.1. Operations

6.6.1.1. Strengths

· Most applications are set up to run from standard scripts

· Standard Jil file generator used

6.6.1.2. Weaknesses

· Too many processes

· Too many process dependencies.

· No standards for Hawk monitoring

· No OPSWARE

· Too much reliance on flat files, which are hard to secure and synchronized.
6.6.2. External User Interfaces

6.6.2.1. Strengths

· Standard k and EQMF APIs

· Flexible for users: they can make ad-hoc KSQL queries
6.6.2.2. Weaknesses

· No standard interfaces

· Making internal changes risks breaking other systems (changing the schema of a table for example)

· Lack of security: l users have access to read and modify all the data

· Stability dangers: Users can corrupt data and crash the system
6.6.3. Product Data
6.6.3.1. Strengths

· Familiar k interface

6.6.3.2. Weaknesses

· Too unreliable, relies on GL_DATA_PRODUCT to be in good shape

· Inflexible, cannot adjust bad data.

· Too many products: no provision for having it load only the products it needs.

6.6.4. Position Keeping
6.6.4.1. Strengths

· Functionality is compartmentalized

· Provides K interface
6.6.4.2. Weaknesses

· Correction logic is too complex.
· Corrections don’t work for EU
· Historical positions do not work for more than 1 day in US.
6.6.5. Liquidation
6.6.5.1. Strengths

· Functionality is compartmentalized

· Mature code

· All but Sweep are perfectly good.
6.6.5.2. Weaknesses

· The business logic in SweepSvc is too complex and hard to maintain.

· Two applications for so little functionality (LiqQuote, LiqQuoteSvc)

· LiqQuote has to be restarted every time LiqQuoteSvc is bounced

· Publishing of the interpolated quotes is not used.
6.6.6. PNL

6.6.6.1. Strengths

· Mature

· Already setup for striping

· Well instrumented for performance testing/tuning
6.6.6.2. Weaknesses

· Code is very hard to understand and maintain

· PNL valuation code is too closely coupled with market data and other program logic.

· Hard to add new functionality

· Logic for the different regions is all in one place.

· Too many built-in latencies.

· Prone to build up tick delays

· Publishes Market data
6.7. Interaction Diagram

The following 2 diagrams depict the interaction between the different services described in the previous section.

This is not an information flow or a process diagram. It depicts how the different services interact with each other.
Note: The arrows represent request for information not flow. That is why they are in the opposite direction to the flow of data.
Fig 2 expands the shaded area in Fig 1.
Fig. 2: Low-level Interaction Diagram

[image: image2.emf]FE

CORE

FES1

Tas

TibAdapter

TibAdapterAQ*

Synth

QueryProxy

SweepSvc1

LiqQuote*

LiqQuoteSvc1*

Recovery1

CoreHelper1

VWap

ArchiveService

Analytics1

AMMAnalytics

PopAggr1*

PopAggrTib*

FX

PWB

BrassBridge

ValEngineBridge

ValEngineOptBridge

pnl2

Synth positions

pnl

pnl2

pnl

Sweeps

Recon1

LastPosition

Drilldown

LastPosition

pnl2

Position/trade drilldown

getPos_rr

GPM Tib

rtpProxy(otc)*

rtpProxy(listed)*

Otp*

EXECS

TDB

ProductProxy

GL_DATA_PRODUCTS

US_VWAP_CALC

AMMServer

AMM

ValEngine

Brass

GStop

ORDERS

DPT

AMMFlow

US_TAQ_RT

US_OPT_LATEST

FX_TDB

US_TDT_OES_HIST

STRESS_PNL*

STRESS_CORE*

LastPosition

TDB

Tick

Tick

US_IFM

TibAdapterRec

overy*

US_WCP

K service

Java EQMF App

Ext. non-K dep.

Ext. K dep.

Pub/sub

K call

K script

Java/k call

Legend

1

Sub to Product Proxy

2PNL normalized ** Eu only, *US only

Quants

Fair values

pnl

CPServer

Split PNL

PNL1

ProductService

ConfigServer

AMM

Deltaone

Swaps

Fig. 3: Interaction Diagram, PNL Detail

[image: image3.emf]PNL1

User of 3 or less desks

CORE1

TibAdaptor

Synth

SweepSvc1

Recovery1

A pnl2

Synth positions

A pnl2

pnl

Market Data

Otc/Listed/OTP

Collapse ticks

Every 2 secs.

1 Uses Product Proxy

2PNL Denormalized

Drilldown

pnl

2

All desks

Full GPM Tib

pnlsweep ?

PNL1

Z pnl2

Master

Combinator

pnl2

Every 2 secs.

LastPosition_A

LastPosition_Z

Z pnl2

Synth positions

TibAdaptorAQ

Full LastPosition

SplitTibAdaptor

pnl_{desk1...deskn}2

User of more than 3 desks

Split GPM Tib/ Remote rvd

Desk 1

Desk n

1-3 Desks

6.8. Event Flow
(Do we want this here?)
7. Frameworks/Languages/APIs
7.1. Introduction

In this section we will discuss different alternatives for languages, packages, APIs and strategies in general that we will use to make concrete proposals in the next section.
7.2. A Note on Languages: k/q vs. Java

A big issue going forward will be deciding whether to write or rewrite applications in k, q or Java. There are advantages and disadvantages to both and, as always, this is a charged, almost religious, issue.

The k vs. q decision is clearer. There are clear advantages to q:

· Q is a better, clearer language

· The firm is moving in that direction

· Access control

· More robust implementation

· Supports 64 bits

· The DBCF framework is being expanded for q

· As time goes by, it will get harder to find/retain k programmers

· Some multi-threading support

Comparing q and Java is trickier. Here is an attempt.

	Q
	Java

	Very fast
	Probably fast enough given multi-threading. Need to do more benchmarks

	Learning curve for learning Q
	All team members know Java

	Familiarity with the framework
	Learning curve for how to use the framework

	Generally Single-threaded, multi-threaded for vector operations: simplifies the code. Can be multi-threaded for concurrent database reads.
	Multi-threaded: Introduces issues of synchronization that are not trivial.

	Easy to copy-translate some of the good code from k to q
	All the code will have to be written from scratch.

	Hard to find/train q coders.
	Java coders much easier to find than q coders.

	Code is concise: hard to read/maintain
	Code is expansive: hard to read/maintain

	Does not talk to Tib. Requires separate TibAdapters
	Talks to Tib directly

	No (real) DB2 interface
	DB2 interface

	Easy to ‘hack’ services by tweaking the database and calling functions via port and web interface.
	No generic built-in interface.

An analysis will have to be made on a case by case as to whether to use q or Java.
7.3. Relative performances of K vs. Java

The following are very preliminary results intended to understand the relative performances of our current system and possible replacements in Q or Java (or even K). For that, we first have to establish baseline measurements against our current implementation.

Since we have a good idea of the performance of our current system, written in K, we are writing some benchmarks for some representative parts of our current PNL service. We will then implement these in Q, Java, multi and single treaded, and whatever else we come up. The objective is to project the performance of the proposed system(s). These are the results so far.
	
	Java (msecs)
	K (msecs)
	Java/K

	Read 150000 rows of pnl from Recovery
	14631
	5691
	257%

	Multiply 2 columns 100 times
	10697
	8612
	124%

	2 threads
	5305
	8612
	62%

	3 threads
	4742
	8612
	55%

	4 threads
	4062
	8612
	47%

	Create 150000 keys
	485
	1
	n/a

	lookup 100000 keys
	328
	n/a
	 n/a

	upsert 13 cols, 10,000 rows
	100
	60
	167%

	upsert 50 cols, 10,000 rows
	150
	70
	214%

	upsert 50 cols, 50 rows
	2 ??
	50
	n/a

Note: The Java code was written as optimized as possible. No high level classers were used. Even so, the code is very readable.
7.4. Basic Strategies

When it comes to a decision to rewrite a component or set of components, the first decision is what language or languages to use and how. Here are some basic strategies:

7.4.1. All Q

The module is written all in Q. It subscribes and publishes tables using DBCF and it is accessed using the DBCF framework. For pure Java access TibAdapters can be used (See TibAdapterRecovery).

7.4.2. All Java

The module is written all in Java. It subscribes and publishes Q tables using EQMF and It is accessed using the EQMF framework. There is no pure Q access to these services as Q cannot call Java programs.

7.4.3. Mixed Q/Java

In this approach a service is written as two cooperating applications: one in Java that listens to data updates, maintains the state and performs all the business logic. It also updates a second Q application which acts as a cache and can be used by other K/Q applications.

7.4.4. Extend the Java API to Allow Subscriptions

The Java API would be extended to allow Java servers to registers as if they where DBCF K services. This approach would eliminate the need for the Q service in the previous strategy (See the section below that describes this extension).
7.4.5. Java with Embedded K

This is an experimental method, used successfully in a front end prototype. The idea is to embed a K interpreter into a Java class using JNI. The application is then written in Java and the data kept in a K database. Some of the most time consuming operations (sorting, aggregation, vector math…) can also be performed in K.
7.5. Extending the Java API to Allow Subscriptions
Some of the flexibility in choosing what language to use in rewriting parts of GPM is lost because both Q and java processes can subscribe to Q processes but Q processes cannot subscribe to Java ones (there is no notion of a Java ‘service’).
A simple solution to this would be to expand the EQMF and DBCF frameworks so as to allow this. With approach it will be possible to combine K, Q and Java as if they were all Q services. This should be a relatively simple project since all the necessary pieces are already in place. Here is the process and what needs to be changed:
7.5.1. The com.lb.base.eqmf.dbcf.* package
This is the new package that will implement the dbcf functionality in Java.

The com.lb.base.eqmf.cf implements the .cf functions.
7.5.2. Table Registration: .cf.register

The EQMF framework will keep track of the table names the service will publish.
 cf.register(String tableName)

This is the first abstraction to be made. The Java process will implement the Q table tableName.
It doesn’t matter how it implements it internally, or of it implements it at all. It will have to be able to create an image of the table in some standard format that can be converted to a Q table. Probably a Dictionary.

7.5.3. Service Registration: .cf.initSrv
Any Java EQMF application would register with an existing Discovery service:

 cf.initSrv(String serviceName)
The only change in Discovery will be to add a new Language (Java, it now supports only K3 and Q).
The service would start listening on a port and send the port number and hostname to Discovery.

7.5.4. Service Start: .cf.start
An EQMF application registered as a service would start sending HEARTBEATS to Discovery the same way Q services do.
cf.start()

Once the java service is registered, it will show up in Discovery like any other service: it will have a port, a hostname, and will be listening for request on that port.
At this point, as far as discovery and dbcf are concerned, a Java application is just another service. This is how it would work:
7.5.5. Subscription

No changes are required here on the Q dbcf end. When a Q or Java service subscribe, they send a request to the [host, port] returned by Discovery. This is just a plain TCP/IP call. The Java api will have to interpret the request: get the [host,port] of the client, open a socket to it and setup the appropriate data structures and processes (timers, threads, etc).
7.5.6. DEFAULT Recovery

When a client application does a recovery request, the service sends the Q or Java client the content of the full table (See table registration above) it requested. There already are methods in the Java API to convert a Dictionary to a Q table. All it would have to do is put together a message with the converted Dictionary and whatever other pieces of information are required. This message is then written to the requester’s socket.
7.5.7. ATOMIC Recovery

Here is where it starts getting complicated: On ATOMIC subscription, the client specifies a query or function to use to select the table to be returned. One solution would be to implement a recovery function which takes arguments only (via the atomicRecoveryParams call), no SQL.

7.5.8. Publishing

This process is implemented purely in the server so it should be simple. Whenever the service decides to publish a table, it creates a Dictionary and sends it to the subscribers using the same mechanism as in Recovery (which converts them to Q structures). This should be very simple.
7.5.9. execProc

If a convention is made as far as function names, this should be very simple: the service gets the request and calls the appropriate function.
7.5.10. execSQL

Not allowed.

7.5.11. Future Development
Even though the purpose of this API is to facilitate the mixing and matching of Q and Java services, there is no reason why Java services cannot become an integral part of the EQMF framework, even in Java to Java communication.
The way to accomplish this would be extend the EQMF notion of Transports, Listeners, Publishers and MsgCreators.

Initially these would be implemented as described above for Dictionary to Q messages, TCP/IP transports and DBCF publishers, but could later become standard Tib/Fix messages.
7.5.12. Other Classes
Together with the above extensions, 3 levels of classes will also be developed:

· Low level: These are classes like our DBCF and GenericService, with methods like executeSQL. These classes provide low level, dbcf-like access to K services and data structures.

· High/Data abstraction level: These are classes like Position and Accounts, which provide a high level abstraction layer to GPM (or other app) specific data.

· Application abstraction level: Classes like risk.PosAggr and risk.Master. These classes are meant to represent explicit services or functionalities and abstract away all implementation details. They would have methods like getEntitlementsForUser(), which would return Java structures and Data abstraction level classes unrelated to K, DBCF or any other K specific concept.
7.6. Service Oriented Architecture (SOA)
7.6.1. The Problem
Both EQMF and dbcf provide access to GPM services from Java and k/q applications. In essence, GPM has a SOA. The problems with the current systems through are:

· No uniform interface: every client uses a different mechanism to connect to GPM.
· No access control: Clients applications can see any data they request, and worse, can write any data they want, which can corrupt the system.
· Users are not shielded from internal changes in GPM. There are no functions to access GPM services, access is usually through KSQL calls or calls to specific functions in k programs.
There are disadvantages to APIs as well

· The API has to be expanded when requirements change, shifting the burden from the clients to GPM
· There could be inefficiencies by not allowing clients to go directly to K services.

· Possible inefficiencies by forcing clients to use generic functions not written specifically for their needs.

The objectives of implementing a true SOA layer on top of GPM are:

· Provide a uniform API
· Implement entitlements

· Shield other systems from internal changes in GPM
7.6.2. API Requirements

· No view to the internal structure of GPM

· All functionality has to have a Java API: Java applications should never access K services directly. The only exception would be client systems written in K/Q. In those cases, functions should provided, never direct KSQL access.
· Whenever possible, the Java API should accept as arguments and return generic Java data types (double, String[], HashMap, ArrayList, etc.). The only exception will be the use of Dictionary for K/Q tables.
· All functions will require a userid (and password?_)???

· Whenever possible, web and port access will require authentication (Q only).
7.6.3. Next Steps

There already is a Java package that meets most of these requirements. Going forward we have to:
· Compile a comprehensive list of all external clients to GPM

· Come up with a list of future users
· Define a full API
7.7. A Common Framework

Moving most of the applications to Java will require code that can be reused across the different applications.
7.7.1. Database

Most GPM services handle some type of table structure. Depending on the results of performance tests, it would be preferable to use an existing package like HSQL. An alternative would be to write one ourselves. Having this would give us the flexibility to make SQL queries directly into Java, which in some cases will obviate the need for an external Q cache.
7.7.2. Object Layer

Work has already been done to generate objects from Q data. Depending on the needs of the application it would be very useful to have a layer that connects these with the Database layer. Perhaps Hibernate or some other similar package should be used.
7.7.3. Transport

If we implement the extensions to the EQMF/DBCF frameworks described in the previous section, it would be very useful to have a layer that takes an application’s data (tables, objects, etc…) and read/publish it directly to/from other applications the same way DBCF does.
7.8. Scripting

There are many applications currently in GPM which are written in Java or K and are better suited to be written n a standard scripting language like Python or Perl. We chose to use Jython going forward for its ability to seamlessly with Java classes and the capability of embedding into Java applications. There are two ways for us in using Jython: 1) standalone scripting and 2) embedded scripting. There are a large number of applications that I believe should be written as standalone scripts. They include:

· Reports

· Data extracts

· Test scripts

· Status monitors

· CGI scripts (JSPs may be better in some cases)

· Tools (e.g. data migration)

· Recons (?)

The main uses for embedded scripting are:

· Prototyping

· User definable functionality

· Rapid development of new functionality into existing Java applications (later to be 'hardcoded' in Java).
8. Proposals

8.1. Introduction

In this section we will use the analisys done in the previous section to propose alternative for future development.

As is always the case, there is a temptation to rewrite the whole system. We will concentrate instead only on those systems that, as currently implemented, are either not meeting current requirements or will not keep up with expected growth. These are also system areas that, because of their importance, warrant a major effort:

· PNL

· Position Keeping

· Product Data

We will also discuss our use of the following non-GPM systems.

· Wombat ticker plans

· Alternative messaging middleware products

We will also propose a framework for implement a service oriented layer over all the GPM components.
8.2. Problem Area 1: PNL

8.2.1. TickServer Proposal
Reorganize all the rtpProxies and OTPs into one tick server. This new server will combine the functionality of the current ticker proxies and all the tick logic currently in PNL. It will cache data from:

· Stocks

· Options

· VWap

· FX

· Fair Values

In addition, it will contain an up-to-date Tick table.

TickServer will publish the Market data block to recombinator.
Alternative 1

Look into using MDS and adding all the above functionality. It may be necessary to add a Q cache if this service is written in Java.
Alternative 2
Roland already wrote and tested a functional TickServer which implements 90% of the requirements. It is written in K and subscribes to all the relevant ticker plants for the US. Although using this seems like a good way to proceed. Since this is a simple, well written application it should be re-written in Q.

Ticker plant alternatives:
· Have the TickServer subscribe directly to Wombat

· Keep the ticker plants separate, as they are now, and have TickServer subscribe to them.
8.2.2. PNL Proposal
The PNL process has to be rewritten. The new PNL will be coded so as to separate-out the business logic. Business logic will be written indifferent modules so that logic from the different regions can be maintained separately.

The new PNL will be much more streamlined. It will no longer contain the market data logic (which now uses about %25 of the CPU in PNL). It will also no longer publish market data. Market data will be published directly by TickServer.
PNL is mostly a database where many of its columns are recalculated (vector operations). If well designed it should be possible to come up with an implementation that is both maintainable and extremely efficient

In my opinion, PNL and Synth are perhaps the only applications (other than caches) in all of GPM that should be written in Q. As stated above, PNL is a very simple application that has very heavy requirements for:

· Database access.

· Vector calculations

· Very high input/output data rates.

These are all features that Q excels at. Q is also a very natural language to write PNL in. Other reason are:
· Closer to current implementation, good functional model.

· Should be fast, specially if we use the multi-threaded feature of Q (this is probably true, we’ll know for sure after we run tests)

· Will have help from First Derivatives consultants.

8.2.3. Alternative PNL Proposal
In its current implementation no services request information from PNL but Recovery and recombinator subscribe to it, so if it was coded in Java it would need a K cache (PNLCache) similar to the RawPNL service (EU). PNLCache would be a very simple process. It would contain the full pnl table and logic for publishing.
Implementing the extensions to the Java API described earlier would eliminate the need for the K cache.
Pros:

· More natural for a business application, code would be more readable.
· More secure: no http ort dirtect port access.

Cons:

· Will have to write all the table handling code

· Slower, would require more instances (this is probably true, we’ll know for sure after we run tests)

· Longer implementation as we have limited experience writing Java services.

· Euclid and AMM feeders (EU) will to have be rewritten.
8.2.4. Recovery Proposal
As described earlier, Recovery is a very simple process. Also, since so many systems access it, it has to remain in Q. It would not need rewriting, except to make it secure it will have to rewritten in Q. This is a very simple application. It would be a good candidate for a line-by-line translation by First Derivatives.
8.2.5. Next Steps

Performance is the main issue with PNL so the first step should be to measure the relative performance of the different alternatives. For this we will write a Q and a Java prototype of a PNL service.
· Implement a representative size table

· Subscribe to Core, Synth and tick replay (to keep the tests consistent)

· Implement multi-threading models according to the language (PC Queues, peach, etc.)

· Calculate the table at regular interval (1 and 2 seconds)

· Try different splits. Q and java version may have to be split into different number of instances.

· Depending on how we implement TickServer and Core, we may also want to experiment with different messaging formats and transports. If core, for example, is re-written in Java we may want to try to send updates (trades) as a Java data structure.
We will also compare different Java implementations to compare their relative performance:
· Vector based

· Object Based

· In-memory database

8.3. Problem Area 2: Position Keeping

The issues here are very different in the different regions. Although complicated, the FES-Core-CoreHelper set works well in the US but not in EU (and AS?). The correction logic is too complex to work well for the number of corrections done in EU.

8.3.1. Proposal
Combine the FES, Core and CoreHelper services into a single process, which queues updates and applies the reversal of a trade and a correction as a single transaction. The new combined process would have some OMS-like functionality in that it would not book the same trade twice, handle a correction on an order that already cancelled, or other simple state errors.
Even though this is also a database application, there is too much business logic to consider writing it in Q. Also, the performance requirements are not as high here as they are in PNL. Using an in-memory database, as described earlier, should make the application efficient and easy to maintain.
In addition to the new combined process there will have to be a separate Q cache, mostly to allow for external KSQL queries.
8.3.2. Alternative Proposal
If, for performance reasons the application cannot be written in Java, it will be written in Q. This is unlikely though.
8.3.3. Position/Trade History Proposal

The ArchiveService as currently implemented is a very simple application: basically a database. Because of its size it barely supports one day’s data in the US. Since this table is escetialy a copy of the Core table, it would make sense to keep this application as is, just recode it in Q.
The QueryProxy application should be rewritten in java since it contains a significant amount of logic, and all it really does is send data from ArchiveService and Historic OES to the front-end.
8.4. Problem Area 3: Product Data

The main problems with the current Product Data system in all 3 regions have to do with:

· Size: Our current implementation of ProductsProxy subscribes to all the products for a particular category
· Data Scope: We are continuous adding new product types, which increases the number of products.
· Data quality: This is currently a big problem but is somewhat outside the scope of this document.
8.4.1. Proposal

The new design calls for 5 applications:
· GL_DATA_PRODUCTS: This will be the equivalent of the current GL_DATA_PRODUCTS. It will hold all relevant ESM products.
· GL_OTC_DATA_PRODUCTS: Similar to GL_DATA_PRODUCTS but for OTC products. It will combine the functionality of the current ProductService in that it will listen to AMMFlow for options.
· ProductsProxy: This will be a Java application that will hold a subset of products needed by GPM at any given moment. On startup it will request the products it needs (determined by a algorithm along the lines of “get all products GM has seen in the last n monts”). It will also listen to Orders and request products it doesn’t have from the ESM or OTC caches so that they will be available in case an execution with it flows to GPM.
· Product Edit Tool: This tool will be used to add/edit products manually (mostly intra-day).
· ProductsCache: This will be a very simple Q cache of all the data in ProductsProxy.
8.5. Ticker Plants

8.6. Messaging Middleware Layer

8.7. Optional Suggestions (work in progress…..)
8.7.1. Operations

· Rework Hawk.
· Move all flat files to UDB

8.7.2. Position Aggregatin
· Build a recon front end too parse files and convert them into a standard (XML?) files. Feed this file to a single recon process.
· Combine PosAggr and PosAggrTib into one java app.

8.7.3. Liquidation
· Combine all into a single Java app.
· See if anybody uses the interpolated quotes. If not, remove.
· Decouple from BrassBridge, send orders directly to whatever OMS we eventually use.
8.7.4. Global Changes

Fig. 4: Proposed Implementation (unfinished)
9. Appendix
9.1. Another Take on the Q/K – Java Debate

From an earlier email by Owen:

This is for most of us just of reiteration of gripes we've all have had for years but I think we need to get them on paper as they will still be problematic in the future.

 In particular the problems in debugging and maintaining code mean that k/q systems seem to get slower as the code deteriorates over time, with performance improvements only achievable by whole scale re-writes which cause bugs that take months to show up in production.

C#/C++/java systems can improve in performance over time as the bottlenecks are profiled and refactored .

1) k and q aren't typesafe -- if by accident you put an integer into a string array, the column automatically converts to a varbinary array with huge performance issues. Adding type checking will slow down the code.

2) k and q tables are easy to corrupt. A k and q table is a dictionary of typed column arrays, fast updates in GPM work by appending a value to each of the column arrays in turn. If this goes wrong (and one column is left with an incorrect length) the whole table is corrupted. This is specific to k - it's hard to see how a problem handling one trade can corrupt a LinkedList of positions. Making the update code more reliable can slow down the code.

3) We don't have any performance tools to easily profile the performance of the code. So we end up making hacks (writing brittle code which caches indexes etc) in various places without really knowing if it will improve performance.

4) The most efficient and fast k and q code is virtually unreadable and unmaintainable. Have a look at the examples in the KX site. C++ and java allow you to write readable code which is can be transparently optimized to run quickly. Most k/q developers end up adding sub-optimal code (using ksql commands for example) because it is less risky than inserting top-end k/q.

5) (linked to 4) There is no good debugging tools. One by-product of this is that when a developer comes to change existing code, they will probably add reasonable simple inefficient code since adding the really efficient k requires too much debugging with nonexistent tools (print statements). So a fast piece of code will deteriorate over time with more and more ksql commands added rather than raw k and q.

6) the code we started from supplied by Arthur is unreadable - functions called a to z with no comments or documentation of any kind. We've based the ticker plants in GPM on this and nobody has every changed the code even thought it doesn’t' do what we want - (storing unused tick histories and not getting initial snapshots).

7) Because k and q are good at array processing and we end up cramming every problem into some kind of pipeline of array processing. The handling of tick updates is pipelined between the raw ticker plants, rtpproxies, realtime proxies and some processing in the pnl process with subscriptions having to be passed the whole way back along the pipeline. Trade processing is split between the fes, core and core helper - a pipeline where corrections are handled in a different process from the main process which handles the state of a trade.

8) k and q are single threaded - again encouraging pipelining in inappropriate places. This will become an even greater barrier to progress as we more from 4-core to 8-core processes and beyond. Arthur is working on this but we have to expect that it will be years before there is a reliable threading code in q. If we write data-parallel code we can easily get huge performance improvements every year as we get hardware which support more threads. Position and Risk management is ideally suited to data-parallel systems.

9) The pipeline is one reason why we find it so hard to manage the GPM production processes even though GPM is tiny compared to AMM or Euclid. There are a large number of different processes rather than an equivalent number of identical processes running partitioned data. When a process in the middle of a pipeline breaks it's always going to be much harder to recover that when a process in a pool of identical process dies.

10) k/q doesn't have any instrumentation to easily monitor the load on the processes so we never really know where the problems are until it falls over.

11) Our k code is split into assemblies of one per process using global data structures, so it's virtually impossible to refactor a small component with trying to figure out the impact on the whole codebase. In java/C++ we can come up with an new faster implementation of an interface which can be confidently plugged into the system if it tested. In k we have to assume that any code change can have huge knock on effects.

9.2. System use by Region/language

	Category
	System
	SubSystem
	
	Language
	US
	EU
	AS

	Information
	
	
	
	
	
	
	

	
	Master
	
	
	k
	X
	X
	

	
	ProductProxy
	
	
	k
	X
	X
	X

	
	ProductService
	
	
	Java
	X
	
	

	
	ConfigServer
	
	
	Java
	X
	X
	X

	Positions
	
	
	
	
	
	
	

	
	Gstop
	
	
	k
	X
	
	

	
	FES
	
	
	k
	X
	X
	X

	
	Core
	
	
	k
	X
	X
	X

	
	CoreHelper
	
	
	k
	X
	X
	

	
	CPServer
	
	
	k
	X
	X
	X

	
	Tas
	
	
	Java
	X
	
	

	
	TraMS
	
	
	Java
	X
	
	

	
	QueryProxy
	
	
	k
	X
	X
	X

	
	GStop
	
	
	k
	X
	
	

	
	ExecsProxy
	
	
	k
	
	
	X

	
	CaryCalculation
	
	
	k
	
	
	X

	
	OMAR
	
	
	Java
	
	
	X

	
	FTSTradePublisher
	
	
	Java
	
	
	X

	
	ArchiveService
	
	
	k
	X
	X
	X

	
	EUAMMPositions
	
	
	Java
	
	X
	

	
	EuclidPositions
	
	
	Java
	
	X
	

	
	EuclidPositionsCore
	
	
	Java
	
	X
	

	Recon
	
	
	
	
	
	
	

	
	Recon
	
	
	k
	X
	X
	X

	
	
	AMM
	
	k
	X
	
	

	
	
	AMMFlow
	
	k
	X
	
	

	
	
	Brass
	
	k
	X
	
	

	
	
	Fiddessa
	
	k
	X
	X
	X

	
	
	TMS
	
	k
	X
	
	

	
	
	ITS
	
	k
	X
	X
	X

	
	
	RISC
	
	k
	X
	X
	X

	
	
	DPT
	
	k
	X
	
	

	
	
	DPTPROP
	
	k
	X
	
	

	
	
	PB
	
	k
	X
	
	

	
	
	GEDS
	
	k
	X
	
	

	
	
	DELTAONE
	
	k
	X
	
	

	
	
	DOLFIN
	
	k
	
	
	X

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	OptionAssign
	
	
	k
	X
	
	

	PNL
	
	
	
	
	
	
	

	
	PNL
	
	
	k
	X
	X
	X

	
	Recovery
	
	
	k
	X
	X
	X

	
	Synth
	
	
	k
	X
	X
	

	
	Combinator
	
	
	k
	X
	X
	

	
	EUAMMPricer
	
	
	Java
	
	X
	

	Tib
	
	
	
	
	
	
	

	
	TibAdapter
	
	
	Java
	X
	X
	X

	
	SplitTibAdapter
	
	
	Java
	X
	
	

	
	TibAdapterAQ
	
	
	Java
	X
	
	

	
	TibAdapterCore
	
	
	Java
	
	X
	X

	
	TibAdapterRecovery
	
	
	Java
	X
	X
	

	
	BrassBridge
	
	
	Java
	X
	
	

	Market Data
	
	
	
	
	
	
	

	
	RTPProxy
	
	
	k
	X
	
	X

	
	
	OTC
	
	k
	X
	
	X

	
	
	Listed
	
	k
	X
	
	X

	
	OTP
	
	
	k
	X
	
	X

	
	FX
	
	
	k
	X
	X
	X

	
	TDBRep
	
	
	k
	
	X
	

	Stress
	
	
	
	
	
	
	

	
	STRESS PNL
	
	
	k
	X
	
	

	
	STRESSS CORE
	
	
	k
	X
	
	

	
	
	
	
	
	
	
	

	Liquidation
	
	
	
	
	
	
	

	
	LiqQuoteSvc
	
	
	k
	X
	
	

	
	LiqQuote
	
	
	Java
	X
	
	

	
	SweepSvc
	
	
	k
	X
	
	

	
	SweepBatchSvc
	
	
	k
	X
	
	

	PosAggr
	
	
	
	
	
	
	

	
	PosAggr
	
	
	k
	X
	
	

	
	PosAggrTib
	
	
	Java
	X
	
	

	Analytics
	
	
	
	
	
	
	

	
	Analytics
	
	
	k
	X
	X
	

	
	AMMAnalytics
	
	
	k
	X
	
	

	
	AMMServer
	
	
	Java
	X
	
	

	
	ValEngineBridge
	
	
	Java
	X
	
	

	
	ValEngineOptBridge
	
	
	Java
	X
	
	

	
	ValEngine
	
	
	Java
	X
	
	

	
	PWB
	
	
	Java
	X
	
	

	
	Vwap
	
	
	k
	X
	
	

	Reports
	
	
	
	
	
	
	

	
	Cash desk position
	
	
	
	
	
	X

	
	India FII position
	
	
	
	
	
	X

	
	Portfolio
	
	
	
	
	
	X

	
	ITS breaks
	
	
	
	X
	
	X

	
	RISC breaks
	
	
	
	X
	
	X

_1226996953.vsd
Workstation

Drag the side handles to change the width of the text block.

Cloud

IBM Compatible

PNL1

FE

CORE

FES1

Tas

TibAdapter

TibAdapterAQ*

Synth

QueryProxy

SweepSvc1

LiqQuote*

LiqQuoteSvc1*

Recovery1

CoreHelper1

VWap

ArchiveService

Analytics1

AMMAnalytics

PopAggr1*

PopAggrTib*

FX

US_TAQ_RT

rtpProxy(otc)*

rtpProxy(listed)*

Otp*

PWB

BrassBridge

ValEngineBridge

ValEngineOptBridge

pnl2

pnl2

Synth positions

pnl

pnl

Sweeps

LastPosition

EXECS

US_OPT_LATEST

1 Sub to Product Proxy
2 PNL normalized

Drilldown

LastPosition

TDB

pnl2

Recon1

Position/trade drilldown

getPos_rr

FX_TDB

GPM Tib

STRESS_PNL*

K service

Java EQMF App

TDB

ProductProxy

GL_DATA_PRODUCTS

STRESS_CORE*

US_VWAP_CALC

AMMServer

AMM

ValEngine

Brass

ORDERS

Ext. non-K dep.

Ext. K dep.

Pub/sub

GStop

K call

DPT
AMMFlow

US_TDT_OES_HIST

K script

Java/k call

Legend

LastPosition

** Eu only, *US only

Tick

Tick

US_IFM

TibAdapterRecovery*

US_WCP

Quants

Fair values

pnl

CPServer

Split PNL

ProductService

ConfigServer

AMM

Deltaone

Swaps

GPMPlex

FE

FE

GPM Tib

pnl2

PosAggr Tib

AQ Tib

LastPosition

Agg. positions

getPos_rr

PNL1

User of 3 or less desks

CORE1

PNL1

Z pnl2

TibAdaptor

Synth

Master

SweepSvc1

Combinator

pnl2

Recovery1

Every 2 secs.

LastPosition_A

LastPosition_Z

Z pnl2

Synth positions

A pnl2

Synth positions

A pnl2

pnl

Market Data
Otc/Listed/OTP
Collapse ticks

Every 2 secs.

1 Uses Product Proxy
2 PNL Denormalized

Drilldown

pnl2

All desks

Full GPM Tib

pnlsweep ?

TibAdaptorAQ

Full LastPosition

SplitTibAdaptor

pnl_{desk1...deskn}2

User of more than 3 desks

Split GPM Tib/ Remote rvd

Desk 1

Desk n

1-3 Desks

PNL1

FE

CORE

FES1

CPServer

TibAdaptor

Synth

QueryProxy

Recovery1

CoreHelper1

VWap

ArchiveService

Analytics1

AMMAnalytics

PopAggr1*

PopAggrTib*

FX

PWB

BrassBridge

ValEngineBridge

ValEngineOptBridge

pnl2

Synth positions

pnl

pnl2

Recon1

LastPosition

Drilldown

LastPosition

pnl2

Position/trade drilldown

getPos_rr

GPM Tib

rtpProxy(otc)*

rtpProxy(listed)*

Otp*

EXECS

TDB

ProductProxy

GL_DATA_PRODUCTS

US_VWAP_CALC

AMMServer

AMM

ValEngine

Brass

DPT

US_WCP

US_OPT_LATEST

FX_TDB

US_TDT_OES_HIST

LastPosition

TDB

K service

Java EQMF App

Ext. non-K dep.

Ext. K dep.

Pub/sub

K call

K script

Java/k call

Legend

1 Sub to Product Proxy
2 PNL normalized

** Eu only, *US only

Tick

Tick

US_IFM

TibAdaptorRecovery*

Recovery
RR

FE

Recovery
RR

LiqQuotes

TibAdapter

LastPosition
 AQ feed

GPM Group 2

pnl2

Master info: arbitrary group

GPM Group 1

Sweeps

EXECS

EXECS

ReCombinator

pnl2
block 0

Full GPM Tib

pnl2 1

Recovery
drilldowns

Quants

pnl2 2

LastPosition
 AQ feed

split GPM Tib

PosAggr
RR+feed

pnl_{desk1...deskn}2

pnl_{desk1...deskn}2
block 0

SpltTibAdapter

block 0

block 0

Stress
Engine

LastPosition

LastPosition

PosAggrTib

Tas to Tas Messages

Brass

CPConfigServer

PosAggr

_1229507791.vsd
Workstation

Cloud

GPM

Execution

Market data

pnl

Product information

GPM Tib

pnl

Trades

Sweeps

Crosses

Euclid

Analtics (greeks)

AMM

Risc

Gstop Orders

FE

GPM Tib

pnl

PosAggr Tib

AQ Tib

Position information

Agg. positions

pnl by desk

_1226996351.vsd
Workstation

Drag the side handles to change the width of the text block.

Cloud

IBM Compatible

PNL1

FE

CORE

FES1

Tas

TibAdapter

TibAdapterAQ*

Synth

QueryProxy

SweepSvc1

LiqQuote*

LiqQuoteSvc1*

Recovery1

CoreHelper1

VWap

ArchiveService

Analytics1

AMMAnalytics

PopAggr1*

PopAggrTib*

FX

US_TAQ_RT

rtpProxy(otc)*

rtpProxy(listed)*

Otp*

PWB

BrassBridge

ValEngineBridge

ValEngineOptBridge

pnl2

pnl2

Synth positions

pnl

pnl

Sweeps

LastPosition

EXECS

US_OPT_LATEST

1 Sub to Product Proxy
2 PNL normalized

Drilldown

LastPosition

TDB

pnl2

Recon1

Position/trade drilldown

getPos_rr

FX_TDB

GPM Tib

STRESS_PNL*

K service

Java EQMF App

TDB

ProductProxy

GL_DATA_PRODUCTS

STRESS_CORE*

US_VWAP_CALC

AMMServer

AMM

ValEngine

Brass

ORDERS

Ext. non-K dep.

Ext. K dep.

Pub/sub

GStop

K call

DPT
AMMFlow

US_TDT_OES_HIST

K script

Java/k call

Legend

LastPosition

** Eu only, *US only

Tick

Tick

US_IFM

TibAdapterRecovery*

US_WCP

Quants

Fair values

pnl

CPServer

Split PNL

ProductService

ConfigServer

AMM

Deltaone

Swaps

GPMPlex

FE

FE

GPM Tib

pnl2

PosAggr Tib

AQ Tib

LastPosition

Agg. positions

getPos_rr

PNL1

User of 3 or less desks

CORE1

PNL1

Z pnl2

TibAdaptor

Synth

Master

ProductsProxy

SweepSvc1

Combinator

pnl2

Recovery1

Every 2 secs.

LastPosition_A

LastPosition_Z

Z pnl2

Synth positions

A pnl2

Synth positions

A pnl2

pnl

Market Data
Otc/Listed/OTP
Collapse ticks

Every 2 secs.

1 Uses Product Proxy
2 PNL Denormalized

Drilldown

pnl2

All desks

Full GPM Tib

pnlsweep ?

TibAdaptorAQ

Full LastPosition

SplitTibAdaptor

pnl_{desk1...deskn}2

User of more than 3 desks

Split GPM Tib/ Remote rvd

Desk 1

Desk n

1-3 Desks

PNL1

FE

CORE

FES1

CPServer

TibAdaptor

Synth

QueryProxy

Recovery1

CoreHelper1

VWap

ArchiveService

Analytics1

AMMAnalytics

PopAggr1*

PopAggrTib*

FX

PWB

BrassBridge

ValEngineBridge

ValEngineOptBridge

pnl2

Synth positions

pnl

pnl2

Recon1

LastPosition

Drilldown

LastPosition

pnl2

Position/trade drilldown

getPos_rr

GPM Tib

rtpProxy(otc)*

rtpProxy(listed)*

Otp*

EXECS

TDB

ProductProxy

GL_DATA_PRODUCTS

US_VWAP_CALC

AMMServer

AMM

ValEngine

Brass

DPT

US_WCP

US_OPT_LATEST

FX_TDB

US_TDT_OES_HIST

LastPosition

TDB

K service

Java EQMF App

Ext. non-K dep.

Ext. K dep.

Pub/sub

K call

K script

Java/k call

Legend

1 Sub to Product Proxy
2 PNL normalized

** Eu only, *US only

Tick

Tick

US_IFM

TibAdaptorRecovery*

Recovery
RR

FE

Recovery
RR

LiqQuotes

TibAdapter

LastPosition
 AQ feed

GPM Group 2

pnl2

Master info: arbitrary group

GPM Group 1

Sweeps

EXECS

EXECS

ReCombinator

pnl2
block 0

Full GPM Tib

pnl2 1

Recovery
drilldowns

Quants

pnl2 2

LastPosition
 AQ feed

split GPM Tib

PosAggr
RR+feed

pnl_{desk1...deskn}2

pnl_{desk1...deskn}2
block 0

SpltTibAdapter

block 0

block 0

Stress
Engine

LastPosition

LastPosition

PosAggrTib

Tas to Tas Messages

Brass

CPConfigServer

PosAggr

